Problem C11.1

(a) By using your results from problem C10.1, show that the generators of the Lorentz group are related to the angular momentum by

$$
J^{m n}=\epsilon^{m n l} J^{l}
$$

Use this relation to determine the matrix $D(\omega)$ for rotations of Dirac spinors in the Weyl representation. How do the upper two and the lower two components transform? Compare your result with the spin- $1 / 2$ representation of $\mathrm{SO}(3)$ (see section 5.1 of the lecture).
(b) Determine the explicit form of $D(\omega)$ for rotations by an angle θ around the x^{3}-axis.

Problem H11.1 Check the following relations for the coherent states of the fermionic harmonic oscillator:
(a)

$$
\left\langle\bar{\psi}_{1} \mid \psi_{2}\right\rangle=\exp \left(-\frac{1}{2} \bar{\psi}_{1} \psi_{1}-\frac{1}{2} \bar{\psi}_{2} \psi_{2}+\bar{\psi}_{1} \psi_{2}\right)
$$

(b)

$$
|\psi\rangle\langle\bar{\psi}|=(1-\bar{\psi} \psi)|0\rangle\langle 0|+\bar{\psi}|0\rangle\langle 1|+\psi|1\rangle\langle 0|-\bar{\psi} \psi|1\rangle\langle 1|,
$$

(c) and finally

$$
\int d \bar{\psi} d \psi|\psi\rangle\langle\bar{\psi}|=1
$$

Problem H11.2 Determine the Fourier transform $S_{F}(p)$ of the Feynman propagator

$$
\left[S_{F}(x)\right]_{\alpha \beta}:=\langle 0| T \psi_{\alpha}(x) \bar{\psi}_{\beta}(0)|0\rangle
$$

for the Dirac field, using the operator expression for ψ and $\bar{\psi}$ in terms of creatinon and annihilation operators. For fermionic operators the time ordered product is defined by

$$
T \psi(x) \bar{\psi}\left(x^{\prime}\right):=\Theta\left(t-t^{\prime}\right) \psi(x) \bar{\psi}\left(x^{\prime}\right)-\Theta\left(t^{\prime}-t\right) \bar{\psi}\left(x^{\prime}\right) \psi(x)
$$

Show that your result can be written as

$$
S_{F}(p)=i \frac{\not p+m}{p^{2}-m^{2}+i \epsilon}
$$

