Problem C10.1 Consider an infinitesimal rotation. For general representations one has

$$
\begin{equation*}
D(\vec{\theta})=\mathbb{1}-i \theta^{k} J^{k} \tag{*}
\end{equation*}
$$

(a) A vector \vec{x} transforms as (draw a picture)

$$
\begin{equation*}
\vec{x} \rightarrow \vec{x}+\delta \vec{x}, \quad \delta \vec{x}=\vec{\theta} \times \vec{x} \tag{**}
\end{equation*}
$$

Recall that a general infinitesimal Lorentz transformation acts on a 4-vector like

$$
x^{\mu} \rightarrow x^{\mu}+\omega^{\mu}{ }_{\nu} x^{\nu}
$$

Determine $\omega^{\mu}{ }_{\nu}$ for the rotation.
(b) To write $(* *)$ in the form $(*)$ find matrices J^{k} such that

$$
\delta \vec{x}=-i \theta^{k} J^{k} \vec{x}
$$

Problem C10.2 Check that the γ^{μ} in the Weyl representation satisfy the Clifford algebra.

Problem H10.1

(a) Show that the $S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ satisfy the relation

$$
\left[S^{\mu \nu}, \gamma^{\rho}\right]=i\left(\eta^{\nu \rho} \gamma^{\mu}-\eta^{\mu \rho} \gamma^{\nu}\right)
$$

(b) Use (a) and the Jacobi identity $[A,[B, C]]+[C,[A, B]]+[B,[C, A]]=0$ to show that $S^{\mu \nu}$ is a representation of the Lorentz algebra.

Problem H10.2

(a) Show that the Dirac action

$$
S=\int d^{4} x \bar{\psi}(i \not \partial-m) \psi
$$

is invariant under the parity transformation

$$
\psi(t, \vec{x}) \rightarrow \gamma^{0} \psi(t,-\vec{x})
$$

(b) Show that if $\psi(t, \vec{x})$ is a solution of the Dirac equation, then $\gamma^{0} \psi(t,-\vec{x})$ is a solution to the Dirac equation.

