Problem C9.1 Re-consider the computation of the wave function renormalization of problem H8.1 in the MS scheme. You should obtain

$$Z = 1 - \frac{g^2}{12(4\pi)^3} \frac{1}{\varepsilon}.$$

Use this to compute (see lecture)

$$\gamma(g,\varepsilon) := \mu \frac{d}{d\mu} \ln Z^{1/2}(g,\varepsilon)$$

and then

$$\gamma(g) := \lim_{\varepsilon \to 0} \gamma(g, \varepsilon).$$

 γ is called the anomalous dimension of $\varphi.$ Can you guess why?

Problem H9.1 β function in φ^3 theory. Consider φ^3 theory in d = 6 space-time dimensions with the Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{1}{2} m_B^2 \varphi^2 - \frac{1}{6} g_B \varphi^3.$$

At leading order the amputated three-point function $G_{amp}^{(3)}(k_1, k_2, k_3)$ is given by $-ig_B$. It is corrected by the loop contribution at order g_B^3 which determines the running of the renormalized coupling. This will be worked out in this exercise, using the MS scheme.

(a) Compute the three-point function to order g_B^3 . Draw the corresponding Feynman diagram. Evaluate the loop correction in $d = 6 - 2\varepsilon$ dimensions making use of Feynman parameters and Wick rotation. You should arrive at

$$G_{\rm amp}^{(3)} = -i g_B - i g_B^3 \Gamma(\varepsilon) I,$$

where I is proportional to an integral over Feynman parameters, which you not need to evaluate.

(b) The renormalized amputated 3-point function is

$$G_{\rm amp,R}^{(3)} = Z^{3/2} \mu^{-3\varepsilon} G_{\rm amp}^{(3)}$$

Write

$$g_B = \mu^{\varepsilon} \left(g + \frac{ag^3}{\varepsilon} \right)$$

and determine the numerical coefficient a such that the divergent terms of $G_{\text{amp,R}}^{(3)}$ cancel. You should find

$$a = -\frac{3}{8} \frac{1}{(4\pi)^3}$$

(c) Determine the beta-function $\beta(g,\varepsilon)$, and then $\lim_{\varepsilon\to 0}\beta(g,\varepsilon) =: \beta(g)$. You should find

$$\beta(g) = -c \, g^3$$

with some numerical coefficient c > 0.

(d) Solve the differential equation that governs the scale dependence of the renormalized coupling,

$$\mu' \frac{dg}{d\mu'} = \beta(g(\mu')),$$

with the initial condition $g(\mu) = g$. How does $g(\mu')$ behave for $\mu' \to \infty$? Determine the position of the pole.