Problem C8.1 Compute the imaginary part of the function $B(p^2, m^2)$ for $p^2 > 4m^2$.

Problem H8.1 Consider one Hermitean scalar field in with the Lagrangian

$$\mathcal{L} = rac{1}{2} \partial_\mu arphi \partial^\mu arphi - rac{1}{2} m_B^2 arphi^2 - rac{1}{6} g_B arphi^3,$$

but now in d = 6 space-time dimensions.

- (a) At order g_B^2 there are several diagrams contributing to the selfenergy. Compute the 1-PI diagram (the one without tadpole), except for one remaining integral over a Feynman parameter. Write $d = 6 2\varepsilon$, and perform a Laurent series expansion around $\varepsilon = 0$, up to order ε^0 .
- (b) Expand the selfenergy $\Pi(p^2)$ around $p^2=m_R^2$ to second order,

$$\Pi(p^2) = \Pi(m_R^2) + (p^2 - m_R^2)\Pi'(m_R^2)$$

and explicitely compute $\Pi(m_R^2)$ and $\Pi'(m_R^2)$. Express your results in terms of the dimensionless integrals

$$c_n = \int_0^1 dx \left[1 - x(1 - x)\right]^n \ln\left[1 - x(1 - x)\right]$$

which you do not need to evaluate further.

(c) Determine the relation between the bare mass m_B and the renormalized mass m_R , as well as the wave function renormalization factor Z.