Problem C8.1 Compute the imaginary part of the function $B\left(p^{2}, m^{2}\right)$ for $p^{2}>4 m^{2}$.

Problem H8.1 Consider one Hermitean scalar field in with the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m_{B}^{2} \varphi^{2}-\frac{1}{6} g_{B} \varphi^{3}
$$

but now in $d=6$ space-time dimensions.
(a) At order g_{B}^{2} there are several diagrams contributing to the selfenergy. Compute the 1-PI diagram (the one without tadpole), except for one remaining integral over a Feynman parameter. Write $d=6-2 \varepsilon$, and perform a Laurent series expansion around $\varepsilon=0$, up to order ε^{0}.
(b) Expand the selfenergy $\Pi\left(p^{2}\right)$ around $p^{2}=m_{R}^{2}$ to second order,

$$
\Pi\left(p^{2}\right)=\Pi\left(m_{R}^{2}\right)+\left(p^{2}-m_{R}^{2}\right) \Pi^{\prime}\left(m_{R}^{2}\right)
$$

and explicitely compute $\Pi\left(m_{R}^{2}\right)$ and $\Pi^{\prime}\left(m_{R}^{2}\right)$. Express your results in terms of the dimensionless integrals

$$
c_{n}=\int_{0}^{1} d x[1-x(1-x)]^{n} \ln [1-x(1-x)]
$$

which you do not need to evaluate further.
(c) Determine the relation between the bare mass m_{B} and the renormalized mass m_{R}, as well as the wave function renormalization factor Z.

