Quantum field theory \quad Sheet $7 \quad$ May 27, 2024

Problem C7.1 In the lecture it was claimed that disconnected parts of the 4-point function do not contribute to the S-matrix. To see this in an example, take one diagram contributing to the 4-point function at lowest order $\left(O\left(\lambda_{B}^{0}\right)\right)$. Fourier transform it and insert the result into the LSZ formula.

Problem H7.1 Consider one Hermitian scalar field in 4 space-time dimensions with the following Lagrangian:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-\frac{1}{6} g \varphi^{3}
$$

(a) Determine the connected 4-point function $G_{c}^{(4)}\left(x_{1}, \ldots x_{4}\right)$ at leading order (which one is that?) in the coupling constant g. Draw all contributing Feynman diagrams. Write $G_{c}^{(4)}\left(x_{1}, \ldots x_{4}\right)$ in terms of $\Delta_{F}(x)$.
(b) Compute the Fourier transform $\widetilde{G}_{c}^{(4)}\left(p_{1}, \ldots p_{4}\right)$. Determine the S-matrix element $\left\langle\mathbf{p}_{3} \mathbf{p}_{4}\right| S-1\left|\mathbf{p}_{1} \mathbf{p}_{2}\right\rangle$ and write it in terms of the Lorentz-invariant Mandestam-variables $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}$, and $u=\left(p_{1}-p_{4}\right)^{2}$.

