Problem C6.1 The generating functional for a free scalar field is given by the path integral

$$
Z[J]=N \int \mathcal{D} \varphi \exp \left\{i S^{\prime}[\varphi]\right\}
$$

with

$$
S^{\prime}[\varphi]=\int d^{4} x\left[-\frac{1}{2} \varphi\left(\partial^{2}+m^{2}\right) \varphi+J \varphi\right]
$$

and with the normalization factor N such that $Z[0]=1$. Solve the equation of motion following from varying S^{\prime} and insert the solution into $\exp \left\{i S^{\prime}[\varphi]\right\}$. Compare your result with the result for $Z[J]$ from the lecture.

Problem C6.2 The neutral pion can decay into two photons:

$$
\pi^{0} \rightarrow \gamma+\gamma
$$

Write the decay rate in the pion rest frame in terms of the invariant matrix element \mathcal{M}. You can assume that \mathcal{M} is Lorentz-invariant.
Hint: The differential rate of a particle with 4-momentum p to decay into N particles with 4-momenta p_{a} can be written as

$$
d \Gamma=\frac{1}{2 p^{0}}(2 \pi)^{4} \delta\left(p-\sum_{a} p_{a}\right)\left[\prod_{a} \frac{d^{3} p_{a}}{(2 \pi)^{3} 2 p_{a}^{0}}\right]|\mathcal{M}|^{2}
$$

Problem H6.1 Consider one Hermitean scalar field in 4 space-time dimensions with the following Lagrangian:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-\frac{1}{6} g \varphi^{3}
$$

(a) Consider the 1-point function $\langle\varphi(x)\rangle$ (the vacuum expectation value of φ) at order g. Start from the generating functional

$$
Z[J]=\frac{\int \mathcal{D} \varphi \exp \left(i S+i \int d^{4} x J \varphi\right)}{\int \mathcal{D} \varphi \exp (i S)}
$$

and expand in the interaction term. Evaluate the resulting expression via Wick's theorem in terms of Feynman propagators $\Delta_{F}\left(x-x^{\prime}\right)$. Draw the corresponding Feynman diagram.
(b) Now determine the contribution to the time ordered 2-point function $G^{(2)}\left(x_{1}, x_{2}\right)=\left\langle T \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right\rangle$ for the interacting theory at order g^{2}. Again expand in the interaction term. Evaluate the resulting expression via Wick's theorem in terms of Feynman propagators $\Delta_{F}\left(x-x^{\prime}\right)$. Draw the corresponding Feynman diagrams.
(c) Compute the Fourier transform

$$
\widetilde{G}^{(2)}\left(p_{1}, p_{2}\right)=\int d^{4} x_{1} \int d^{4} x_{2} e^{i\left(p_{1} \cdot x_{1}+p_{2} \cdot x_{2}\right)} G^{(2)}\left(x_{1}, x_{2}\right)
$$

of the 2-point function. Thereby write the position space Feynman propagators in terms of their Fourier transforms $\Delta_{F}(p)$, and perform all integrals, except the ones over the loop momenta.

