Quantum field theory Shee	t 1 April 8, 2024
---------------------------	-------------------

Problem C1.1 The electric and magnetic fields \mathbf{E} and \mathbf{B} can be written in terms of the scalar potential Φ and the 3-dimensional vector potential \mathbf{A} as $\mathbf{E} = -\nabla \Phi - \dot{\mathbf{A}}$, $\mathbf{B} = \nabla \times \mathbf{A}$. One can combine the potentials to form a 4-dimensional vector potential by defining $A^0 = \Phi$. The field strenght tensor is $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

(a) Verify that the components of the electric and magnetic fields can be written as

$$E_i = F^{i0}, \qquad B_i = \frac{1}{2}\epsilon_{imn}F^{mn}.$$

Here ϵ_{imn} is the the (totally antisymmetric) Levi-Civita symbol with $\epsilon_{123} = 1$.

(b) Show that Maxwell's equations can be written as

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}, \qquad \partial_{\mu}\widetilde{F}^{\mu\nu} = 0$$

Here

$$J = \left(\begin{array}{c} \rho \\ \mathbf{J} \end{array}\right)$$

is the 4-vector current density with the charge density ρ and the 3-dimensional current density J. Furthermore, \tilde{F} is the *dual* field strength

$$\widetilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$

with the 4-dimensional Levi-Civita symbol with $\epsilon^{0123} = 1$.

Problem H1.1

(a) Write the Lagrangian density for the electromagnetic field (see problem C1.1)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

in terms of (i) the A^{μ} and also (ii) in terms of E and B.

(b) Apply the principle of least action to

$$S = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - J_{\mu} A^{\mu} \right)$$

by varying A^{μ} and determine the resulting equations of motion. Write them (i) in terms of the A_{μ} and (ii) in terms of E and B.

Problem H1.2 Consider a Lorentz transformation $x^{\mu} \to \Lambda^{\mu}{}_{\nu}x^{\nu}$ with $\eta^{\rho\sigma}\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma} = \eta^{\mu\nu}$. If a field φ transforms as $\varphi \to \varphi'$ with $\varphi'(x) = \varphi(\Lambda^{-1}x)$ it is called a scalar field.

(a) Compute $\partial_{\mu}\varphi'$. Show that $\partial_{\mu}\varphi\partial^{\mu}\varphi$ transforms like a scalar field.

(b) Show that the action $S[\varphi] = \int d^4x \mathcal{L}(\varphi, \partial \varphi)$ with

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - V(\varphi)$$

is invariant under this transformation, that is, that $S[\varphi'] = S[\varphi]$.