Problem C1.1 The electric and magnetic fields \mathbf{E} and \mathbf{B} can be written in terms of the scalar potential Φ and the 3 -dimensional vector potential \mathbf{A} as $\mathbf{E}=-\nabla \Phi-\dot{\mathbf{A}}, \mathbf{B}=\nabla \times \mathbf{A}$. One can combine the potentials to form a 4-dimensional vector potential by defining $A^{0}=\Phi$. The field strenght tensor is $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Verify that the components of the electric and magnetic fields can be written as

$$
E_{i}=F^{i 0}, \quad B_{i}=\frac{1}{2} \epsilon_{i m n} F^{m n}
$$

Here $\epsilon_{i m n}$ is the the (totally antisymmetric) Levi-Civita symbol with $\epsilon_{123}=1$.
(b) Show that Maxwell's equations can be written as

$$
\partial_{\mu} F^{\mu \nu}=J^{\nu}, \quad \partial_{\mu} \widetilde{F}^{\mu \nu}=0
$$

Here

$$
J=\binom{\rho}{\mathbf{J}}
$$

is the 4 -vector current density with the charge density ρ and the 3 -dimensional current density \mathbf{J}. Furthermore, \widetilde{F} is the dual field strength

$$
\widetilde{F}^{\mu \nu} \equiv \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

with the 4-dimensional Levi-Civita symbol with $\epsilon^{0123}=1$.

Problem H1.1

(a) Write the Lagrangian density for the electromagnetic field (see problem C1.1)

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

in terms of (i) the A^{μ} and also (ii) in terms of \mathbf{E} and \mathbf{B}.
(b) Apply the principle of least action to

$$
S=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-J_{\mu} A^{\mu}\right)
$$

by varying A^{μ} and determine the resulting equations of motion. Write them (i) in terms of the A_{μ} and (ii) in terms of \mathbf{E} and \mathbf{B}.

Problem H1.2 Consider a Lorentz transformation $x^{\mu} \rightarrow \Lambda^{\mu}{ }_{\nu} x^{\nu}$ with $\eta^{\rho \sigma} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=\eta^{\mu \nu}$. If a field φ transforms as $\varphi \rightarrow \varphi^{\prime}$ with $\varphi^{\prime}(x)=\varphi\left(\Lambda^{-1} x\right)$ it is called a scalar field.
(a) Compute $\partial_{\mu} \varphi^{\prime}$. Show that $\partial_{\mu} \varphi \partial^{\mu} \varphi$ transforms like a scalar field.
(b) Show that the action $S[\varphi]=\int d^{4} x \mathcal{L}(\varphi, \partial \varphi)$ with

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)
$$

is invariant under this transformation, that is, that $S\left[\varphi^{\prime}\right]=S[\varphi]$.

