MATH. METHODEN DER PHYSIK I

WS 2015/2016: Übungsblatt 13

45. Der Formfaktor F(k) einer kugelsymmetrischen Ladungsverteilung $\rho(r)$ ist definiert als

 $F(k) = \int \rho(r)e^{-i\vec{k}\vec{r}}d^3\vec{r}$

mit $k=|\vec{k}|$ und $r=|\vec{r}|$. Diesen Formfaktor kann man in der Regel messen. Nehmen Sie an, man hätte experimentell

$$F(k) = \left(1 + \frac{k^2}{a^2}\right)^{-1}$$

ermittelt, und bestimmen Sie $\rho(r)$.

- 46. Berechnen Sie die Laplace-Transformierten von $\cos(kt)$, $\sin(kt)$, $\cosh(at)\cos(at)$ und $\sinh(at)\cos(at)$.
- 47. Berechnen Sie die Funktion f(t) zur Laplace-Transformierten

$$F(s) = \frac{1}{(s+a)(s+b)}, \quad a \neq b$$

- a) durch Partialbruchzerlegung und Tabellen,
- b) unter Benutzung des Faltungstheorems,
- c) durch die explizite Formel für die inverse Transformation.
- 48. Bestimmen Sie $\mathcal{L}^{-1}[F]$ für
 - a) $F(s) = \frac{k^2}{s(s^2 + k^2)}$
 - b) $F(s) = (s^2 + a^2)^{-2}$