ELEMENTARY PARTICLE PHYSICS WS 2016/2017: Exercise sheet 9

29. The 4 × 4 matrix γ_5 is defined as $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$.

- a) Show that $\gamma_5^2 = 1$.
- b) Show that $\{\gamma_5, \gamma^{\mu}\} = 0$.
- c) Show that $P_{R/L} = (1 \pm \gamma_5)/2$ are projectors, i.e. $P_{R/L}^2 = P_{R/L}$, $P_R P_L = 0$, $P_R + P_L = 1$. Show then that $P_{R/L} \psi$ are eigenvectors of γ_5 with eigenvalues ± 1 .
- d) Compute γ_5 in the Dirac representation of the γ matrices. Apply this to the *u* spinors as derived (in the same representation) in the lecture for the case of m = 0 and $\vec{p} = (0, 0, p)$ along the z direction. Compare with exercise 20.
- 30. a) Utilizing 29.b) proof that $\operatorname{tr}\{\gamma^{\mu}\}=0=\operatorname{tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\sigma}\}=0.$
 - d) Compute tr{ $\gamma_{\mu}\gamma_{\nu}\gamma_{\sigma}\gamma_{\rho}$ }, using the Clifford algebra, the properties of a trace and exercise 15.
 - c) Show that $\operatorname{tr}\{\gamma^{\mu}\gamma_{5}\} = \operatorname{tr}\{\gamma^{\mu}\gamma^{\nu}\gamma_{5}\} = \operatorname{tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{5}\} = 0$ and that $\operatorname{tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{5}\} = 4i\epsilon^{\mu\nu\rho\sigma}$ with the totally antisymmetric (Levi-Civita) tensor $\epsilon^{0123} = +1$.