ELEMENTARY PARTICLE PHYSICS WS 2016/2017: Exercise sheet 7

23. Starting from the expression for the photon field operator

$$\hat{A}^{\mu}(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2E_k}} \sum_{\lambda} \epsilon^{\mu}_{\lambda}(k) \left(\hat{a}(k)e^{-ikx} + \hat{a}^{\dagger}(k)e^{+ikx}\right)$$

show that the photon's Feynman propagator $\langle 0|T\{\hat{A}^{\mu}(x)\hat{A}^{\nu}(y)\}|0\rangle$ in momentum space is proportional to $\sum_{\lambda} \epsilon^{\mu}_{\lambda}(k)\epsilon^{\nu}_{\lambda}(k)$

24. Compute the transition matrix element from an initial $|e^{-}(k, s)e^{+}(k', s')\rangle$ state to the final state $\langle \mu^{-}(p, t)\mu^{+}(p', t')|$ for a theory with the interacting part of the Hamiltonian as $\mathcal{H}_{int} = g\bar{\chi}\gamma_{\mu}\chi A^{\mu} + g\bar{\psi}\gamma_{\mu}\psi A^{\mu}$ where χ, ψ denote the muon, electron field resp. and A^{μ} is the photon field.