ELEMENTARY PARTICLE PHYSICS WS 2016/2017: Exercise sheet 5

- 16. Compute how $(\bar{\psi}\gamma_{\mu}\psi)(\vec{0},t)$ and $(\bar{\psi}\psi)(\vec{0},t)$ behave under a rotation around the *z*-axis.
- 17. Using the (classical) solutions $u_s(p), v_s(p)$ of the Dirac equation as given in the lecture, compute
 - (i) $u_s^{\dagger}(p)u_t(p)$ and $v_s^{\dagger}(p)v_t(p)$ resp.
 - (ii) $\bar{u}_s(p)u_t(p)$ and $\bar{v}_s(p)v_t(p)$ resp.
 - (iii) $\sum_{s=\pm} u_{\alpha}(p,s)\bar{u}_{\beta}(p,s)$ and $\sum_{s=\pm} v_{\alpha}(p,s)\bar{v}_{\beta}(p,s)$ resp.
- 18. Show that

$$\begin{bmatrix} \hat{H}, \hat{a}^{\dagger}(\vec{p}) \end{bmatrix} = E_p \hat{a}^{\dagger}(\vec{p})$$

$$\begin{bmatrix} \hat{H}, \hat{a}(\vec{p}) \end{bmatrix} = -E_p \hat{a}(\vec{p})$$

$$(1)$$

with the Hamilton operator \hat{H} and the commutation relations for $\hat{a}(\vec{p})$ and $\hat{a}^{\dagger}(\vec{p})$ as introduced in the lecture.

19. Show that

$$j_{\mu}(x) = i \left[\Phi^*(x)(\partial_{\mu}\Phi(x)) - \Phi(x)(\partial_{\mu}\Phi^*(x)) \right]$$

is a conserved current for the Klein-Gordon theory. Show further that

$$i\int d^3\vec{x} \left[\Phi^*(x)(\partial_0\Phi(x)) - \Phi(x)(\partial_0\Phi^*(x))\right]$$

is the corresponding conserved charge.