ELEMENTARY PARTICLE PHYSICS WS 2016/2017: Exercise sheet 11

- 32. Rewrite the QED Lagrangian in terms of the chiral fermion fields $\psi_{L,R} = P_{L,R}\psi$. $P_{L,R}$ are defined in exercise 23.
- 33. The $\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$ are an isospin I = 3/2 multiplet with $I_{3} = 3/2, 1/2, -1/2, -3/2$ and B = 1. Using isospin invariance compare the probability for producing Δ^{++} in $\pi^{+}p \to \Delta^{++}$ with the probability of producing Δ^{0} in $\pi^{-}p \to \Delta^{0}$.
- 34. Write down the quark content of all the states in the baryon decuplet.

35. a) Verify for the Gell-Mann matrices $\lambda_i, i = 1, \dots, 8$, that

$$\operatorname{tr}\{\lambda_i\lambda_j\} = 2\,\delta_{ij}$$

b) The Gell-Mann matrices satisfy the socalled Lie-algebra

$$[\lambda_i, \lambda_j] = 2if_{ijk}\lambda_k$$

with the coefficients (structure constants) f_{ijk} . Verify this through explicit computation of f_{123} , f_{147} , f_{246} , f_{257} , f_{345} , f_{516} , f_{637} , f_{458} , f_{678} .

c) Using a) and b) show that the structure constants are antisymmetric under exchange of an arbitrary pair of indices. Hint: Consider tr{ $[\lambda_i, \lambda_j]\lambda_m$ } and use properties of the trace.